43 research outputs found

    Applications drivers for data parking on the Information Superhighway

    Get PDF
    As the cost of data storage continues to decline (currently about one-millionth of its cost four decades ago) entirely new applications areas become economically feasible. Many of these new areas involved the extraordinarily high data rates and universal connectivity soon to be provided by the National Information Infrastructure (NII). The commonly held belief is that the main driver for the NII will be entertainment applications. We believe that entertainment applications as currently touted (multi-media, 500 video channels, video-on-demand, etc.) will play an important but far from dominant role in the development of the NII and its data storage components. The most pervasively effective drivers will be medical applications such as telemedicine and remote diagnosis, education and environmental monitoring. These applications have a significant funding base and offer a clearly perceived opportunity to improve the nation's standard of living. The NII's wideband connectivity both nationwide and worldwide requires a broad spectrum of data storage devices with a wide-range of performance capabilities. These storage centers will be dispersed throughout the system. Magnetic recording devices will fill the majority of these new data storage requirements for at least the rest of this century. The storage needs of various application areas and their respective market sizes will be explored. The comparative performance of various magnetic technologies and competitive alternative storage systems will be discussed

    Hearing Loss Prevents the Maturation of GABAergic Transmission in the Auditory Cortex

    Get PDF
    Inhibitory neurotransmission is a critical determinant of neuronal network gain and dynamic range, suggesting that network properties are shaped by activity during development. A previous study demonstrated that sensorineural hearing loss (SNHL) in gerbils leads to smaller inhibitory potentials in L2/3 pyramidal neurons in the thalamorecipient auditory cortex, ACx. Here, we explored the mechanisms that account for proper maturation of γ-amino butyric acid (GABA)ergic transmission. SNHL was induced at postnatal day (P) 10, and whole-cell voltage-clamp recordings were obtained from layer 2/3 pyramidal neurons in thalamocortical slices at P16–19. SNHL led to an increase in the frequency of GABAzine-sensitive (antagonist) spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs), accompanied by diminished amplitudes and longer durations. Consistent with this, the amplitudes of minimum-evoked IPSCs were also reduced while their durations were longer. The α1- and β2/3 subunit–specific agonists zolpidem and loreclezole increased control but not SNHL sIPSC durations. To test whether SNHL affected the maturation of GABAergic transmission, sIPSCs were recorded at P10. These sIPSCs resembled the long SNHL sIPSCs. Furthermore, zolpidem and loreclezole were ineffective in increasing their durations. Together, these data strongly suggest that the presynaptic release properties and expression of key postsynaptic GABAA receptor subunits are coregulated by hearing

    Balancing Feed-Forward Excitation and Inhibition via Hebbian Inhibitory Synaptic Plasticity

    Get PDF
    It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis shows that inhibitory Hebbian plasticity generates ‘negative feedback’ that balances excitation and inhibition, which contrasts with the ‘positive feedback’ of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the sensitivity of the learning dynamics to the correlation structure of the excitatory inputs

    Long-Term Outcomes with Subcutaneous C1-Inhibitor Replacement Therapy for Prevention of Hereditary Angioedema Attacks

    Get PDF
    Background For the prevention of attacks of hereditary angioedema (HAE), the efficacy and safety of subcutaneous human C1-esterase inhibitor (C1-INH[SC]; HAEGARDA, CSL Behring) was established in the 16-week Clinical Study for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy (COMPACT). Objective To assess the long-term safety, occurrence of angioedema attacks, and use of rescue medication with C1-INH(SC). Methods Open-label, randomized, parallel-arm extension of COMPACT across 11 countries. Patients with frequent angioedema attacks, either study treatment-naive or who had completed COMPACT, were randomly assigned (1:1) to 40 IU/kg or 60 IU/kg C1-INH(SC) twice per week, with conditional uptitration to optimize prophylaxis (ClinicalTrials.gov registration no. NCT02316353). Results A total of 126 patients with a monthly attack rate of 4.3 in 3 months before entry in COMPACT were enrolled and treated for a mean of 1.5 years; 44 patients (34.9%) had more than 2 years of exposure. Mean steady-state C1-INH functional activity increased to 66.6% with 60 IU/kg. Incidence of adverse events was low and similar in both dose groups (11.3 and 8.5 events per patient-year for 40 IU/kg and 60 IU/kg, respectively). For 40 IU/kg and 60 IU/kg, median annualized attack rates were 1.3 and 1.0, respectively, and median rescue medication use was 0.2 and 0.0 times per year, respectively. Of 23 patients receiving 60 IU/kg for more than 2 years, 19 (83%) were attack-free during months 25 to 30 of treatment. Conclusions In patients with frequent HAE attacks, long-term replacement therapy with C1-INH(SC) is safe and exhibits a substantial and sustained prophylactic effect, with the vast majority of patients becoming free from debilitating disease symptoms

    Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex

    No full text
    The role of inhibition in sensory cortical map plasticity is not well understood. Here we tested whether inhibition contributes to expression of receptive field plasticity in developing rat somatosensory (S1) cortex. In normal rats, microiontophoresis of gabazine (SR 95531), a competitive gamma-aminobutyric acid (GABA)-A receptor antagonist, preferentially disinhibited surround whisker responses relative to principal whisker responses, indicating that GABA(A) inhibition normally acts to sharpen whisker tuning. Plasticity was induced by transiently depriving adolescent rats of all but one whisker; this causes layer 2/3 (L2/3) receptive fields to shift away from the deprived principal whisker and toward the spared surround whisker. In units with shifted receptive fields, gabazine preferentially disinhibited responses to the deprived principal whisker, unlike in controls, suggesting that GABA(A) inhibition was acting to preferentially suppress these responses relative to spared whisker responses. This effect was not observed for L2/3 units that did not express receptive field plasticity or in layer 4, where receptive field plasticity did not occur. Thus GABA(A) inhibition promoted expression of sensory map plasticity by helping to sharpen receptive fields around the spared input

    The auditory cortex of the bat Molossus molossus: Disproportionate search call frequency representation

    No full text
    The extent of the auditory cortex in the bat Molossus molossus was electrophysiologically investigated. Best frequencies and minimum thresholds of neural tuning curves were analyzed to define the topography of the auditory cortex. The auditory cortex encompasses an average cortical surface area of 5 mm2. Characteristic frequencies are tonotopically organized with low frequencies being represented caudally and high frequencies rostrally. However, a large interindividual variability in the tonotopic organization was found. In most animals, the caudal 50% was tonotopically organized. More anterior, a variable area was found. A distinct field with reversed topography was not consistently found. Within the demarcated auditory cortex, frequencies of 30–40 kHz, which correspond to the frequency range of search calls emitted during hunting, are overrepresented, occupying 49% of the auditory cortex surface. High minimum thresholds >50 dB SPL were found in a narrow dorsal narrow area. Neurons with multipeaked tuning curves (20%) preferentially were located in the dorsal part of the auditory cortex. In accordance with studies in other bat species, the auditory cortex of M. molossus is highly sensitive to the dominant frequencies of biosonar search calls

    GABAA: better late

    No full text

    Postnatal maturation of primary auditory cortex in the mustached bat, Pteronotus parnellii.

    No full text
    The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess to which degree AI postnatal maturation depends on active echolocation or/and reflects ongoing cochlear maturation, cortical neurons were recorded in juveniles up to postnatal day P29, before the bats are capable of active foraging. At P1-2, neurons in posterior AI are tuned sensitively to low frequencies (22-45 dB SPL, 28-35 kHz). Within the prospective DSCF area, neurons had insensitive responses (>60 dB SPL) to frequencies <40 kHz and lacked sensitive tuning curve tips. Up to P10, when bats do not yet actively echolocate, tonotopy is further developed and DSCF neurons respond to frequencies of 51-57 kHz with maximum tuning sharpness (Q(10dB)) of 57. Between P11 and 20, the frequency representation in AI includes higher frequencies anterior and dorsal to the DSCF area. More multipeaked neurons (33%) are found than at older age. In the oldest group, DSCF neurons are tuned to frequencies close to 61 kHz with Q(10dB) values < or =212, and threshold sensitivity, tuning sharpness and cortical latencies are adult-like. The data show that basic aspects of cortical tonotopy are established before the bats actively echolocate. Maturation of tonotopy, increase of tuning sharpness, and upward shift in the characteristic frequency of DSCF neurons appear to strongly reflect cochlear maturation
    corecore